
                 On identifying the sound sources in a turbulent flow 
                                           
                                          M. E. Goldstein 
 
National Aeronautics and Space Administration, Glenn Research Center, Cleveland, Ohio 44135 
                                                      marvin.e.goldstein@nasa.gov  
 
ABSTRACT 
 
A space-time filtering approach is used to divide an unbounded turbulent flow into its radiating 
and non-radiating components. The result is then used to clarify a number of issues including the 
possibility of identifying the sources of the sound in such flows. It is also used to investigate the 
efficacy of some of the more recent computational approaches. 
 
1. INTRODUCTION 
   It is impossible to identify the “sources” of sound without first defining what is 
actually meant by “sound”.  Unfortunately, current understanding of unsteady 
compressible flows, especially turbulent shear flows, is still too rudimentary to 
give a completely general definition of this quantity.  Most of the relevant theory 
is extremely quantitative and seems to fall back on Kovasznay’s (1953) 
decomposition of the small amplitude inviscid motion on a uniform flow into 
acoustic and non-acoustic vortical and entropic components, with the acoustic 
component being associated with the pressure fluctuations and the 
vortical/entropic component being independent of the pressure (see Smits and 
Dussauge, 1996 ). While it is widely recognized that this decomposition is invalid 
for real turbulent flows-where the pressure and vortical fluctuations can be 
strongly coupled- it is common practice to refer to the acoustic component of the 
motion even though it can’t be rigorously defined. Some progress along these 
lines was made by Lighthill (1952) who was able to implicitly identify such a 
component for a limited class of flows—namely those that are sufficiently 
localized in space.  The vorticity is confined to a localized region in such flows 
and the external motion (especially at large distances) is completely 
characterized by the pressure fluctuations, which propagate (i.e. radiate) away 
from the flow.  
      Lighthill, of course, went on to show that these fluctuations are described by 
an inhomogeneous wave equation with a quadrupole-type source term. So in a 
certain sense the sound is actually generated by this source. But that source also 
generates all sorts of other (much more energetic but non-propagating) motions 
and it is impossible to distinguish what part of the source is actually responsible 
for generating the sound. So from a practical point of view, referring to this term 
as “the source of sound” is almost meaningless—especially since it is almost 
impossible to calculate or measure it with any great accuracy. What is really 
needed here is a way of identifying a source term that generates only the 
acoustic (i.e. the radiating) component of the motion. This would, if it were 
actually possible, provide a much more meaningful characterization of the elusive 
“acoustic source”. (An early attempt at this is outlined in Fedorchenko, 2001.) 
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        The first step in finding such a source would be to provide a quantitative 
characterization of the acoustic (i.e. propagating component) of the motion--the 
seeds of which are actually contained in Lighthill’s (1952) equation. It is possible 
to use that equation  (Goldstein,2005) to demonstrate that only those 
components of the motion with space-time  Fourier transforms that lie on the 
spherical surface in wave number or - space with radius  equal to the 
frequency, say ω ,  divided by the speed of sound at infinity, say ,contribute to 
the propagating component of the motion (see figure 1).  

k
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        The second step would be to use this characterization to divide the motion 
into its radiating and non-radiating components and to derive an equation for 
each of these components. The final step would be to identify a “source term” in 
the radiating component equation that only depends on the non-radiating 
component of the motion--which would then be the desired sound source. We 
would, of course, want the non-radiating component of the motion to have at 
least some chance of being a physically realizable flow, i.e. we would want it to 
satisfy the usual conservation laws of mass momentum and energy. It would also 
be nice if the radiating component of the motion was to satisfy linear equations—
but this may be too much to ask.  
 
2. THE BASIC EQUATIONS 
      
    It, therefore, seems appropriate to begin by dividing the dependent variables in 
the Navier Stokes equations, i.e. the density ρ , the pressure , the velocity  
and the enthalpy h  into, say, a base flow component, which I denote here by 
over-bars and tildes and residual components, which are essentially defined by 
the equations  
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and to require that the base flow components satisfy the usual hyperbolic 
conservation laws, which can be written fairly compactly as (Goldstein and 
Leib,2007) 
 
                                                      
                                                      0,oD =ρ                                                      [2.2] 
  

                                             e
o i

i j
ij

p
D v

x x
eρ

∂ ∂
+ =
∂ ∂

                                            [2.3] 

  

                               42

1 2 1
je e

o j
i

ij
p p

D v v
t x

e
eγ ρ

γ γ
⎛ ⎞∂⎛ ⎞ ∂

+ − = +⎜⎜ ⎟− ∂ ∂ −⎝ ⎠ ⎝ ⎠
⎟                          [2.4] 

 
where the Latin indices range from 1 to 3, the summation convention is being 
used,  
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for any function f , we assume that the base flow variables, as well as the 
original Navier Stokes variables satisfy an ideal gas law equation of state, with γ  
being the specific heat ratio, ep  denotes a pressure-like variable that can differ 

from the thermodynamic pressure, and jeλ  with 1, 2,3, 4λ =  denotes an, as yet, 

arbitrary 4x3 dimensional stress tensor. (Greek indices will always range from 1 
to 4.) These equations include, among other things, the Euler equations, the 
Navier Stokes equations themselves, and most importantly for our purposes, the 
Favre filtered Navier Stokes equations. 
 
    We have previously shown (Goldstein, 2000, 2002, 2003, see also Goldstein 
and Leib, 2007) that the remaining residual variables are determined by the five 
formally linear equations  
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where 
                                                   ,i j ij e i jp e≡ − ′θ δ                                              [2.9] 
 
is the total base flow stress tensor, 
 

                                                 2c pγ ρ≡                                                 [2.10] 
 
 the square of the base flow sound speed. The true non-linearity of these 
equations is hidden in the non-linear dependent variables  
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as well as in the quadratically non-linear source strengths   

  
                                           1,2,3,4i i ie e e≡ =−′′ ′λ λ λ λ                                  [2.13] 
 
where ieλ′  denotes the generalized Reynolds stress 
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 The former non-linearity causes no particular difficulty here because the variable 
of principle interest, namely the pressure-like variable ep′ , reduces to the ordinary 
pressure fluctuation in the far field where the sound is to be calculated. The 
latter non-linearity is discussed in section 4.  

p′

 
 
3. THE FILTERED EQUATIONS   
  We now show that the base flow equations can be used to describe the non-
acoustic component of the motion. To this end we identify them with the Favre 
filtered Navier Stokes equations by interpreting the over bars in equations [2.2]- 
[2.4]  to be the filtered variables 
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and the tildes to be the Favre filtered variables      
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where f denotes  any combination of the variables ρ, ,p, and h, the dot is a 
place holder for these quantities and the kernel 

iv
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space- time filter  (Aldama,1990) can be any generalized function (in the 
distribution sense ) of space and time. We do not, however, required to satisfy 
the usual normalization condition  

  

                                                                                                                  [3.4] ( ), dt =
V
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The base flow source strength ieν  is then given by (Goldstein, 2003) 
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4. DECOMPOSITION OF THE FLOW INTO RADIATING AND NON-
RADIATING COMPONENTS 
 
 In order to actually construct the non-radiating base flow, we take the Fourier 
transform of  [3.1] and use the convolution theorem to show that  
 

 ( ) ( ) ( ) ( )4, 2 , ,F G F ,ω π ω=k k ωk  [4.1] 

where the capital letters denote the space time  Fourier transforms  
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of the corresponding lower case symbols. 

It follows that it is only necessary to select a filter kernel ( ),g tx  that has no 
wavenumber components lying on the spherical surface of radius   in order 
to insure that the Fourier transform 

0/ cω
( ),F ωk  of the corresponding filtered 

variable ( , )f tx has a similar property. Then, as noted in the introduction, using 
such a filter to determine the base flow equations will cause that flow to be non-
radiating. Solutions of model problems suggest that the Fourier transforms 
( ),F ωk of the original Navier -Stokes variables (ρ, ,p, and h) may be singular iv
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on this surface, which could place some restrictions on the form of the filter, but 
would not invalidate the result.  
     Since the radiating sphere in −k space corresponds to the 45o lines =0, 
where 

k±

 
 ( )0/k k cω± ≡ ±  [4.3] 

in the / ocω , k = k -space shown in figure 2, this is equivalent to requiring that 

( ),G ωk  vanish on those lines.  An appropriate filter  can be constructed by 
putting  
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is the Heaviside unit function. Taking inverse transforms shows 
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 Figure 3 is a plot of ( )κΘ Δ vs. κ for various values ofΔ . Notice that it becomes 

more and more concentrated around κ =0 when Δ  becomes large. The , 
therefore, become concentrated around the 45

( )k±Θ Δ
o lines in the k -ω  plane when 

, which means that the base flow will contain all of the non-radiating 
components of the motion in this limit.  
Δ →∞
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       It now follows from equation [4.7] and APPENDIX A that the filter is given 
by  

g
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where x± denote the characteristic coordinates 
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And since equation [3.1] can also be written as 
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whereξ± denote the dummy integration variables  
       

                                                       0cξ ξ± ≡ ± τ                      [4.12] 

 
corresponding to the characteristic variables [4.9].   Integrating this result by 
parts shows that  
 
 
( ) ( ), ,f t f t= +x x  
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where the Ω - integration is over the unit sphere in -space. This result will 
account for all of the non-radiating components of

ξ
( ),f tx whenΔ →∞ .  

               
 Notice that  
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so that the next to last integration in [4.13] cannot, in general, be carried out in 
closed form. This can, however, always be done when x is in the far field, and  
APPENDIX B uses Lighthill’s equation to show that the filter [4.8] eliminates the 
entire acoustic field in this case. 
       The residual variables ( ) ( ) ( ), , ,f t f t f t′ ≡ −x x x  now correspond to the 
negative of the curly bracket term in [4.13] and will, therefore, account for the 
entire radiating component of the motion whenΔ →∞ . But their space-time 
Fourier transforms will then occupy zero volume in wavenumber-frequency 
space, which should not be a problem, since the most widely used filter, namely 
the time average  
 

                                              ( ) ( )1lim , ,
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T
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t dt
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also has this property (because it excludes all frequencies that do not lie on the 

0ω = axis) . The residual variables are still determined by [2.6] to[2.8], whose 
right hand sides can now be interpreted as pure acoustic sources (in the sense 
that they generate only the acoustic component of the motion). This interpretation 
would not, of course, be valid if Δ  were finite, because the residual variables 
would then have to account for some of the non-radiating components of the 
motion.  However, the acoustic and non-acoustic components of the motion will 
still be fully coupled even when the non-acoustic component is eliminated from 
the residual variables.  They can, of course, be decoupled by modeling the base 
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flow source terms [3.5] and [3.6], which would greatly simplify the computation of 
that flow. This (approximate) partial decoupling is similar to the (exact) partial 
decoupling found by Goldstein (1978) for the small amplitude vortical and 
entropic motion on a potential flow—but certainly not the complete decoupling 
found by Kovasznay (1953).  
 
        The complete residual equation source strength  ie′′ν  involves both base flow 
and quadratically non-linear residual components. The latter, which can either 
represent true sound sources or non-linear propagation effects, are likely to be 
small at subsonic and moderately supersonic speeds, since, as noted above, 
only a very small fraction of the flow energy can radiate. But this would imply that 
the base flow source strengths [3.5] and [3.6] are responsible for generating both 
the radiating and non-components of the motion. (Notice that the first terms in 
these equations are non-radiating but the second terms, which involve quadratic 
interactions between the non-radiating components, can generate radiating wave 
numbers.) This would certainly make it very difficult to model these quantities—
especially if the models could only depend on the base flow variables. But this 
would decouple the base flow solution from the residual (radiating) motion and 
the residual equations would then be an inhomogeneous linear system with 
known source terms (that are determined by the base flow solution). The right 
hand sides of these equations could then be interpreted as pure acoustic sources 
in the strict classical acoustics sense. But the interpretation would be based on 
an approximate result! The main difficulty is that the modeled stresses generate 
both the radiating and non-radiating components of the motion—which is a good 
indication that this approach may be too subtle to implement numerically. It is, of 
course, possible to move the residual stresses to the left side of the equations 
and calculate the sound from the full nonlinear equations, but this would make 
the present approach more complicated and computationally more expensive 
than solving the original Navier−Stokes equations.  
            
 
5. MORE COMPUTATIONALLY VIABLE APPROACHES 
              
While the present result is certainly of theoretical interest, it can probably not be 
implemented without first introducing an appropriate source model to close the 
base flow equations. But since that has not, as yet, been accomplished, the only 
viable options for creating non-radiating base flows is to make them behave 
incompressibly (Hardin & Pope, 1994; Fedorchenko, 2001, Goldstein, 2003) or to 
be less ambitious in the choice for the filter.  We focus here in the latter because 
the former is probably inappropriate for the high Mach numbers of technological 
interest.  But the only non-radiating (compressible) flows with well developed 
source models are the steady (time average) flows corresponding to the pure 
time average filter[4.15]. The base flow equations would then be the usual 
Reynolds averaged Navier Stokes (RANS) equations (Pope, 2000) and the 
residual source strength [2.13] - [2.15], [3.5] and [3.6] would be  given by 
(Goldstein,2003) 
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which shows that it now has zero time average as would be expected from a true 
acoustic source. 
         Unfortunately, the residual motion is now the entire unsteady flow (which 
certainly has significant non-acoustic components) and the dominant contribution 
to the residual sources  [2.14] and[2.15] comes from the residual stresses, which 
can no longer be determined from the base flow. It is, therefore, necessary to 
close the residual equations by introducing an appropriate model for these 
stresses, which may, however, depend on the base flow solution. This is a major 
disadvantage of this approach, but it can be shown (Goldstein and Leib, 2007) by 
using the vector Green’s function ( ), ,g tλν τx y to obtain an expression for the 

pressure-like variable ep′ in terms of the residual source strength[5.1], that the far 
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convolution product  
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depends only on the mean flow,  with a modified Reynolds stress correlation 
tensor , which (in the absence of viscosity) is, in turn, related to the 
generalized velocity/enthalpy Reynolds stress autocovariance tensor 

( ; ,j l τν μ y ηR
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which is about as close as you can get to what is actually measured in a 
turbulent flow, by the simple linear transform 
                

            ( )
21 1

2 2j jlj j l kk l l jkk lR R Rν νν μ ν μ μ μ ν μ
γ − γ −⎛ ⎞= − δ + δ + δ δ⎜ ⎟

⎝ ⎠
R iikkR                       [5.6] 

where  denotes the four dimensional Kronecker delta. This shows, among 

other 
lμδ

things, that (2 , )p tx depends only on the two point correlations of the turbulent 
stresses and not on their instantaneous values, which greatly simplifies the 
modeling requirements.  But, as noted above, the models must represent the 
entire turbulent flow and, therefore, cannot be expected to be very universal.  
     This latter difficulty can, in principle, be overcome by choosing the filter[3.1] to 
be purely spatial, which would turn the base flow equations into the usual large 
eddy simulation (LES) equations. These equations are usually closed by 
introducing appropriate models for the base flow stresses, which would again 
produce a partial decoupling of the base flow and residual motions. But the 
original objective of dividing the motion into acoustic and non-acoustic 
components is now completely lost, since the base flow is now radiating.         
        The residual equations can again be closed by introducing an appropriate 
model for the residual stresses (which may again depend on the base flow 
solution) and the result can be used to calculate the sound from the unresolved 
scales (Bodony and Lele, 2002). But the far field pressure autocovariance 

(2 , )p tx  will depend on the instantaneous values of these stresses, which are 
much more difficult to model then the lower order turbulence statistics embodied 
in the Reynolds stress autocovariance tensor. And since this will be the case 
whenever the base flow is unsteady, it may be that the steady base flow 
approach, which represents the current state of the art (Khavaran and Bridges, 
2004; Goldstein, and Leib, 2007), is actually the best methodology to use at this 
point in time—especially since the basic formula [5.2] provides an effectively 
exact relation between the type of quantities that are actually measured in real 
turbulent flows.   
     But the question then arises as to whether this, necessarily empirical, 
approach can be used to identify the sound sources and, more importantly, 
sound generation mechanisms. The answer is that it may (depending on how 
well the source terms can be modeled) be able to provide some useful insights 
into the nature of these sources and/or mechanisms, but is inherently incapable 
of providing exact results—primarily because it does not completely eliminate all 
of the source identification issues associated with the Lighthill approach. This 
also has important experimental implications because it is only the Reynolds 
stresses themselves and not the radiating component of these stresses that can 
actually be measured in a turbulent flow.  
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6. CONCLUSIONS 
 
Lighthill (1952) argued that the strength of his quadrupole source could be 
obtained to a good approximation by calculating its value for an equivalent flow 
devoid of sound. The present result provides an analytical basis for that idea.  
Since the Fourier transform filter widths can, be made arbitrarily small, our 
analysis shows that the base flow can, in principle, be chosen to be the entire 
non-radiating component of the motion with the residual flow containing only 
radiating components. And since only a small fraction of the flow energy gets 
radiated as sound, the latter should be small compared to the base flow 
component and should therefore be almost completely generated by the base 
flow source term, which means it will be determined by a known source term in a 
nearly linear set of equations if the base flow equations could be closed by 
introducing an appropriate source model for that flow.  The acoustic sources 
could then be unambiguously identified in the classical acoustics sense. But no 
base flow closure model has as ever been proposed!  
 
APPENDIX A  
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where, as noted above, we have simplified the notation by allowing  to take on 
negative values, chosen the polar axis in the 

k
, ,kθ ψ  spherical coordinate system 
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to be in the -direction and introduced the new integration variables given by x k±

[4.3]. But it follows from equation [4.7] that  
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where ( )xδ denotes the Delta function in the usual notation.  
 
APPENDIX B   
 
Lighthill’s equation  
 

                                  
2 2 2

2
2 o i

j j i j

c T
x x x xt

∂ ρ ∂ ρ ∂
∂ ∂ ∂ ∂∂

− = j  [B.1] 

 

where 

 ( )2
ij i j ij oT v v p cρ δ ρ≡ + −  [B.2] 

is the Lighthill  stress tensor with the viscous terms (which are believed to play an 
insignificant role in the sound generation process) omitted can be used to directly 
verify that the filter [4.8] eliminates the radiating component of the motion. 
         This equation (which is an exact result) can be solved to obtain (recall that 
we are assuming the flow to be unbounded) 
                  

                  ( )
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0
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i jo

ij

V

T c
t

x xc
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d∂ρ

∂ ∂π
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x

y
y
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                                [B.3] 

which behaves like 
 

              ( )
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2
3 22
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4

i j
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x x
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⎛ ⎞⋅
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x x yx y y

xx
→∞x           [B.4] 

 
and it follows from classical acoustics that the remaining dependent variables will  
exhibit similar behavior. Equation [B.4] implies that 
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x xx
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and therefore that      
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But since introducing the new dependent variable cosη ξ θ≡  shows that 
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it now follows that 
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where we have again simplified the result by using symmetry to artificially extend 
the integration range to negativeξ -values. It now follows that 
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Then since the remaining dependent variables must also behave like[B.4], this 
shows that the filter [4.8] eliminates the acoustic field. 
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Figure 2.--Radiating elements in 0/ c kω − space      
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      Figure 3.--Plot of ( )κΘ Δ vs. κ for various values ofΔ . 
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